THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010 I/J University Mathematics 2015-2016 Assignment 2

1. Evaluate each of the following limits.

(a)
$$\lim_{x \to +\infty} \frac{3x}{x-1} - \frac{2x}{x+1}$$

(b)
$$\lim_{x \to +\infty} (\sqrt{x+1} - \sqrt{x})\sqrt{x+2}$$

(c)
$$\lim_{x \to +\infty} \frac{\sqrt{x+\sqrt{x+\sqrt{x}}}}{\sqrt{x+1}}$$

(d)
$$\lim_{x \to +\infty} \left(\frac{x-1}{x+2}\right)^{2x}$$

(e)
$$\lim_{x \to 0} \frac{\tan 3x}{2x}$$

(f)
$$\lim_{x \to 0} \frac{(1+x)^n - 1}{x}$$
, where *n* is a natural number.

2. Let
$$f(x) = \sqrt{e^{-\frac{1}{x}}}$$
 for $x \neq 0$

- (a) Do $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to 0^-} f(x)$ exist?
- (b) Does $\lim_{x\to 0} f(x)$ exist?

3. Let $f(x) = \sin(\ln x)$ for x > 0. Show that $\lim_{x \to 0^+} f(x)$ does not exist.

(Hint: Consider $a_n = e^{-(2n-\frac{1}{2})\pi}$ and $b_n = e^{-(2n+\frac{1}{2})\pi}$.)

4. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} x \cos\left(\frac{1}{e^x - e^{-x}}\right) & \text{if } x \neq 0, \\ \\ a & \text{if } x = 0, \end{cases}$$

where a is a real number.

- (a) Find $\lim_{x \to 0} f(x)$.
- (b) If f(x) is continuous at x = 0, find the value of a.
- 5. Let $f: [0,1] \to \mathbb{R}$ be a continuous function such that $0 \le f(x) \le 1$ for all $x \in [0,1]$. Show that there exists $c \in [0,1]$ such that f(c) = c. (Hint: Consider the function g(x) = f(x) x.)
- 6. Let $f:[0,1) \to \mathbb{R}$ be a continuous function that satisfies f(xy) = f(x)f(y) for all $x, y \in [0,1)$.
 - (a) Show that f(0) = 0 or f(x) = 1 for all $x \in [0, 1)$.
 - (b) Suppose that f(0) = 0.

(i) Let $x \in [0, 1)$. By using the mathematical induction, show that

$$[f(x)]^{2^n} = f(x^{2^n}) \qquad --(*)$$

for all natural numbers \boldsymbol{n}

(ii) By taking limit on both sides of (*), show that -1 < f(x) < 1 for all $x \in [0, 1)$.