THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010 I/J University Mathematics 2015-2016

Assignment 2

1. Evaluate each of the following limits.
(a) $\lim _{x \rightarrow+\infty} \frac{3 x}{x-1}-\frac{2 x}{x+1}$
(b) $\lim _{x \rightarrow+\infty}(\sqrt{x+1}-\sqrt{x}) \sqrt{x+2}$
(c) $\lim _{x \rightarrow+\infty} \frac{\sqrt{x+\sqrt{x+\sqrt{x}}}}{\sqrt{x+1}}$
(d) $\lim _{x \rightarrow+\infty}\left(\frac{x-1}{x+2}\right)^{2 x}$
(e) $\lim _{x \rightarrow 0} \frac{\tan 3 x}{2 x}$
(f) $\lim _{x \rightarrow 0} \frac{(1+x)^{n}-1}{x}$, where n is a natural number.
2. Let $f(x)=\sqrt{e^{-\frac{1}{x}}}$ for $x \neq 0$.
(a) Do $\lim _{x \rightarrow 0^{+}} f(x)$ and $\lim _{x \rightarrow 0^{-}} f(x)$ exist?
(b) Does $\lim _{x \rightarrow 0} f(x)$ exist?
3. Let $f(x)=\sin (\ln x)$ for $x>0$. Show that $\lim _{x \rightarrow 0^{+}} f(x)$ does not exist.
(Hint: Consider $a_{n}=e^{-\left(2 n-\frac{1}{2}\right) \pi}$ and $b_{n}=e^{-\left(2 n+\frac{1}{2}\right) \pi}$.)
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)=\left\{\begin{array}{cc}
x \cos \left(\frac{1}{e^{x}-e^{-x}}\right) & \text { if } \quad x \neq 0 \\
a & \text { if } \quad x=0
\end{array}\right.
$$

where a is a real number.
(a) Find $\lim _{x \rightarrow 0} f(x)$.
(b) If $f(x)$ is continuous at $x=0$, find the value of a.
5. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $0 \leq f(x) \leq 1$ for all $x \in[0,1]$. Show that there exists $c \in[0,1]$ such that $f(c)=c$. (Hint: Consider the function $g(x)=f(x)-x$.)
6. Let $f:[0,1) \rightarrow \mathbb{R}$ be a continuous function that satisfies $f(x y)=f(x) f(y)$ for all $x, y \in[0,1)$.
(a) Show that $f(0)=0$ or $f(x)=1$ for all $x \in[0,1)$.
(b) Suppose that $f(0)=0$.
(i) Let $x \in[0,1)$. By using the mathematical induction, show that

$$
[f(x)]^{2^{n}}=f\left(x^{2^{n}}\right) \quad--(*)
$$

for all natural numbers n
(ii) By taking limit on both sides of $(*)$, show that $-1<f(x)<1$ for all $x \in[0,1)$.

